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ABSTRACT 
Multicollinearity often causes a huge explanatory problem in multiple linear 
regression analysis. In presence of multicollinearity the ordinary least squares 
(OLS) estimators are inaccurately estimated. In this paper the multicollinearity 
was detected by using observing correlation matrix, variance influence factor 
(VIF), and eigenvalues of the correlation matrix. The simulation multicollinearity 
data were generated using MINITAB software and make comparison between 
methods of principal component regression (PCR) and the OLS methods. 
According to the results of this study, we found that PCR method facilitates to 
solve themulticollinearity problem. 
 
Keywords: Linear Regression, Multicollinearity, Variance Influence Factor, 
Simulation. 
 
 

 

INTRODUCTION 
Multicollinearity is a statistical phenomenon in which there exists a perfect or exact 
relationship between the predictor variables. When there is a perfect or exact 
relationship between the predictor variables, it is difficult to come up with reliable 
estimates of their individual coefficients. It will result in incorrect conclusions about the 
relationship between outcome variable and predictor variables. (Gujarat, 2004). The 
presence of multicollinearity has several serious effects on the OLS estimates of 
regression coefficients such as high variance of coefficients may reduce the precision 
of estimation, it can result in coefficients appearing to have the wrong sign, the 
parameter estimates and their standard errors become extremely sensitive to slight 
changes in the data points and it tends to inflate the estimated variance of predicted 
values (Montgomery, 2001). Because multicollinearity is a serious problem when we 
are working for predictive models. So it is very important for us to find a better method 
to deal with multicollinearity. The objective of this paper is to compare OLS and PCR 
methods to solve multicollinearity problems using the Monte Carlo simulation data. 
 
 
METHODOLOGY 

 

Data 
In this paper, the simulation data (50 observations) were generated using Minitab 
software, where the correlation coefficients between the predictor variables are large 
( )99.095.0 and and the number of independent variables is five.  
 

Detection of Multicollinearity 
The following methods have been used to detect the multicollinearity. 
 
Observing correlation matrix  
A high value of the correlation between two variables may indicate that the variables 
are collinear. This method is easy, but it cannot produce a clear estimate of the degree 
of multicollinearity. (El-Dereny and Rashwan, 2011). 
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Variance influence factor (VIF)  
The VIF quantifies the severity of multicollinearity in an ordinary least squares 
regression analysis. Let 2

jR  denote the coefficient of determination when jX  is 
regressed on all other predictor variables in the model. The VIF is given by: 

21
1

jR
VIF   1...3,2,1 pj (Montgomery, 2001) 

 

Eigen Analysis of Correlation Matrix  
The eigenvalues can also be used to measure the presence of multicollinearity. If 
multicollinearity is present in the predictor variables, one or more of the eigenvalues 
will be small (near to zero). 
 
Principal Component Regression (PCR) 

 

The PCR provides a unified way to handle multicollinearity which requires some 
calculations that are not usually included in standard regression analysis. The principle 
component analysis follows from the fact that every linear regression model can be 
restated in terms of a set of orthogonal explanatory variables. These new variables are 
obtained as linear combinations of the original explanatory variables. They are referred 
to as the principal components. 
 

 
RESULTS AND DISCUSSIONS 
Detection of Multicollinearity 
The correlation matrix based on a set of simulated data were given in table1. 
 

Table1:  Correlation matrix of independent variables 
 

95.0  
Variables X1 X2 X3 X4 X5 

X1 1.0000 0.9509 0.9496 0.9599 0.9384 
X2 0.9509 1.0000 0.9379 0.9460 0.9367 
X3 0.9496 0.9379 1.0000 0.9452 0.9513 
X4 0.9599 0.9460 0.9452 1.0000 0.9302 
X5 0.9384 0.9367 0.9513 0.9302 1.0000 

99.0  
X1 1.0000 0.9876 0.9878 0.9914 0.9884 
X2 0.9876 1.0000 0.9882 0.9866 0.9821 
X3 0.9878 0.9882 1.0000 0.9871 0.9869 
X4 0.9914 0.9866 0.9871 1.0000 0.9844 
X5 0.9884 0.9821 0.9869 0.9844 1.0000 

 

 
Table 1 shows the correlation between independent variables are highly correlated. 
This implies that the multicollinearity exits. This results further confirmed by VIF and 
Eigen values structure and the results are given in table 2 & 3. 

 
Table 2:  VIF values of independent variables 

 

Variables 
VIF 

95.0 99.0
X1 18.76 91.90 
X2 13.95 58.03 
X3 16.05 68.85 
X4 16.21 71.80 
X5 13.14 54.28 

 
Table 2 shows the VIF each independent variables is greater than 10 in two different 
correlation coefficients which implies that the multicollinearity exist. 
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Table3:  Results of Eigen analysis 
 

Variables 
95.0  99.0  

j  Kj 
j  Kj 

X1 4.7785 1.00 4.9482 1.00 
X2 0.0796 60.06 0.0183 270.72 
X3 0.0593 80.65 0.0150 328.94 
X4 0.0434 110.03 0.0108 456.77 
X5 0.0392 121.76 0.0076 649.00 

 

From the table 3, the corresponding condition indices are large in two different data. 
This indicates that there is multicollinearity between independent variables.   
 
According to the above results, there is multicollinearity exist in the independent 
variables. The OLS estimates of two different types of multicollinearity data are given 
in table 4. 

 
Table4: Results of multiple regression models 

 

Variables 
95.0  99.0  

ˆ
 

SE of  
ˆ

 

t-
values 

p-
values 

ˆ
 

SE of  
ˆ  

t-values p-values 

C -0.0118 0.0502 -0.24 0.815 -0.0045 0.0237 -0.19 0.849 
X1 0.3610 0.1664 2.17 0.035 0.4345 0.1702 2.55 0.014 
X2 -0.0896 0.1538 -0.58 0.513 0.1959 0.1380 1.42 0.163 
X3 0.3579 0.1528 2.34 0.024 0.0695 0.1440 0.48 0.632 
X4 0.3253 0.1550 2.10 0.042 0.3743 0.1473 2.54 0.015 
X5 0.0241 0.1293 0.19 0.853 -0.0836 0.1473 -0.64 0.527 
S = 0.3321     R-Sq(adj) = 92.9%       

 F=75.80 (0.000) 
S = 0.1541 R-Sq(adj) = 98.5%  

 F=626.25(0.000) 
 

Table 4 shows the overall modelsof both simulated data is significant at 5% 
significance level. However, only three independent (X1, X3, and X4) variables are 
statistically significant in the first model and two independent (X1and X4) variables are 
statistically significant in the second model and other variables are not statistically 
significant because of multicollinearity. 
 
 

Principal Component Regression 
The principal components technique can be used to reduce multicollinearity in the 
estimation data.  
 

Table 5: Eigen values and eigenvectors 
 

Variable
s 

Eigen values of the Correlation Matrix 
95.0  

Eigen values of the Correlation Matrix 
99.0  

Eigen value Proportion Cumulative Eigen value Proportion Cumulative 
X1 4.7785 0.9557 0.9557 4.9482 0.9896 0.9896 
X2 0.0796 0.0159 0.9716 0.0183 0.0037 0.9933 
X3 0.0593 0.0119 0.9835 0.0150 0.0030 0.9963 
X4 0.0434 0.0087 0.9922 0.0108 0.0022 0.9985 
X5 0.0392 0.0078 1.0000 0.0076 0.0015 1.0000 

Variable
s 

Eigenvectors Eigenvectors 
Z1 Z2 Z3 Z4 Z5 Z1 Z2 Z3 Z4 Z5 

X1 0.449 -0.311 -0.183 0.194 -0.794 0.448  0.066 -0.411 0.212 -0.763 
X2 0.447 -0.276 0.782 -0.321 0.103 0.447 -0.603 0.357  0.531 0.165 
X3 0.448 0.352 -0.425 -0.702 0.041 0.447 -0.046  0.508 -0.704 -0.210 
X4 0.448 -0.462 -0.369 0.312 0.595 0.447 -0.189 -0.641 -0.317 0.504 
X5 0.445 0.700 0.198 0.519 0.059 0.447 0.771 0.187 0.270 0.305 
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From the table 5, the first principal components of the explanatory variables of both 
simulated data are given below. 
 

543211 445.0448.0448.0X0.447449.0 XXXXZ  

543211 447.0447.0447.0X0.447448.0 XXXXZ  
 
Also table 5 indicates that the first component accounts for 95.57% variance by the 
first model and 98.96% of the variance accounts by the second model. All remaining 
components are not significant. Hence, the first components have been chosen in two 
models. Then the linear regression of Y against Z1 is given by. 
 

11 ZY (a) 
 

The estimated value of can be obtaining by the equation (a) and the results are 
given in table 6. 
 

Table6: Results of principal component regressions 
 

Variables 
95.0  99.0  Both 

ˆ  SE of  
ˆ  

t-
values 

p-
values 

ˆ  SE of  
ˆ  

t-
values 

p-
values VIF 

C -0.024 0.049 -0.49 0.624 0.005 0.023 0.19 0.847 - 
Z1 0.442 0.018 24.46 0.000 0.444 0.008 53.26 0.000 1.000 

S = 0.3425     R-Sq(adj) = 92.4% 
F=598.09(0.000) 

S = 0.1617     R-Sq(adj) = 98.3%     
F=2836.87(0.000) 

 

 
According to the table 6, selecting a model based on first principal component Z1 has 
removed the multicollinearity in both models.   
 
 
CONCLUSIONS   
Multicollinearity often causes a huge explanatory problem in multiple linear regression 
analysis. When multicollinearity is present in the data, ordinary least square estimators 
are inaccurately estimated. If the goalis to understand how the various X variables 
impact Y, then multicollinearity is a big problem. According to the results of this study 
the multicollinearity was detected using examination of correlation matrix, calculating 
thevariance inflation factor (VIF), Eigen value analysis and the remedial measures of 
principal component analysis helps to solve theproblem of multicollinearity. 
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