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ABSTRACT 
Two categories of exact solutions are found to the Einstein field equations for 
an anisotropic fluid sphere with a particular choice of the anisotropic factor and 
one of the gravitational potentials. The condition of pressure isotropy is 
reduced to a linear second order differential equation which can be solved in 
general. Consequently I can find exact solutions to the Einstein field equations 
corresponding to a static spherically symmetric gravitational potential in terms 
of elementary functions, namely polynomials and product of polynomials and 
algebraic functions. These solutions contain particular solutions found 
previously including models of isotropic relativistic spheres 
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INTRODUCTION 
Exact solutions to the Einstein field equations with anisotropic matter have been 
studied   by many investigators in recent years. Such Solutions for static spherically 
symmetric interior spacetimes are important in describing compact objects in 
relativistic astrophysics. Researchers have attempted to introduce different 
approaches of finding solutions to the field equations. Hansraj and Maharaj (2006) 
found solutions to the Einstein-Maxwell system with a specified form of the electrical 
field with isotropic pressures. These solutions satisfy a barotropic equation of state 
and regain the Finch and Skea (1989) model. Some of the researchers considered 
anisotropic pressures in the presence of the electromagnetic field with the linear 
equation of state of strange stars with quark matter. The approach of Esculpi and 
Aloma (2010) is interesting in that it utilizes the existence of a conformal symmetry in 
the spacetime manifold to find a solution. These exact solutions are relevant in the 
description of dense relativistic astrophysical objects.  
 
In order to integrate the field equations, various restrictions have been placed by 
investigators on the geometry of space time and the matter content. Mainly two distinct 
procedures have been adopted to solve these equations for spherically symmetric 
static models. Firstly, the coupled differential equations are solved by computation 
after choosing an equation of state. Secondly, the exact Einstein solutions can be 
obtained by specifying the geometry and the form of the anisotropic factor. The later 
technique has been used by Takisa and Maharaj (2013) to produce solutions in terms 
of special functions and elementary functions that are suitable for the description of 
relativistic charged stars.  
 
The principal objective of this work is twofold.  Firstly, I seek to model a relativistic 
sphere with anisotropic matter which is physically acceptable. I require that the 
gravitational fields and matter variables are finite, continuous and well behaved in the 
stellar interior and the solution is stable with respect to radial perturbations. Secondly, I 
seek to regain an isotropic solution of Einstein field equations which satisfy the 
relevant physical criteria when the anisotropy factor vanishes. This ideal is not easy to 
achieve in practice and only a few examples with the required two features have been 
found thus far.  The main objective of this paper is to provide systematically a solution 
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to Einstein equations with anisotropic matter whish satisfy the above two conditions. In 
Section 2, the Einstein field equations for the static spherically symmetric line element 
with anisotropic matter is expressed as an equivalent set of differential equations 
utilizing a transformation. I chose particular forms for one of the gravitational potentials 
and the anisotropic factor, which enables me to obtain the condition of pressure 
anisotropy in the remaining gravitational potential.  This is the master equation which 
determines the solvability of the entire system.  It is possible to exhibit exact solutions 
to the Einstein field equations in terms of elementary functions. Physical properties of 
the solutions are briefly discussed in Section 3. 
 
FIELD EQUATIONS 
Assume that the interior of a relativistic star should be spherically symmetric. 
Therefore there exists coordinates  time and ( r, θ, φ) spherical coordinates such that 
the line element is of the form  
 

(1) 
 
where  and  are arbitrary functions related to the gravitational potentials. The 
system of Einstein field equations becomes for the line element (1) 

 
 
 
 
 
 
 
 
 
 
 
 
 

The quantity  is the energy density,  is radial the pressure, is the tangential 
pressure and is the anisotropic factor. This system governs the behaviour of the 
gravitational field for an anisotropic perfect fluid.  To solve this system it is necessary 
to choose two of the variables. 
 
 In this approach  and are specified. The remaining unknowns are then obtained 
from the rest of the system.  
 
It is convenient at this point to introduce the choices 
 

 
where K and  are arbitrary constants.  On using these choices, the equations (2b)-
(2d) becomes  

 
 
which is a nonlinear differential equation.  
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To linearise this equation it is now convenient to introduce the transformation
 

 
 
With this transformation, the nonlinear differential equation (3) becomes 
 

 
 
Note that the Einstein system (2) implies 
 

 
 

 
 

 
 
In terms of the independent variable x and dependent variable . Equation (4) is the 
second order linear differential equation in terms of the new variables   and x, and is 
the master equation for the system (2). Also the equation (4) to be solved to find i.e 
the metric function . 
 
It is possible to express the solution of (4) in terms of special functions namely the 
Gegenbauer functions. However that form of the solution is not particularly useful 
because of the analytic complexity of the special functions involved. In addition the 
role of parameters of physical interest, such as the spheroidal parameter K, is lost or 
obscured in the representation as Gegenbauer functions. The representation of the 
solutions in a simple form is necessary for a detailed physical analysis. Consequently I 
attempt to obtain a general solution to the differential equation (4) in a series form 
using the method of Frobenius. Later I will indicate that it is possible to extract 
solutions in terms of polynomials and algebraic functions for particular parameter 
values as demonstrated by Komathiraj and Maharaj (2010). 
 
As the point   is the regular point of the differential equation (4), there are two 
linearly independent solutions. Thus the general solution to (4) can be assumed by the 
method of Frobenius as  
 

 
where  are constants to be determined.  
 
Two classes of solutions in terms of elementary functions for (4) are possible from the 
above series form.   The first category of solutions for   is given by  
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for the values  

 
 

 
The second category of solution for   has the form 

 
with the values  

 
 

 
In the above two categories of solutions A and B are arbitrary constants.   
 
 
DISCUSSION 
One of the original reasons for studying anisotropic matter was to generate models 
that permit redshifts higher than the critical redshift of isotropic matter. Observational 
results indicate that certain isolated objects have redshifts higher than critical redshift 
of isotropic matter. I have found new solutions to the Einstein field equations for an 
anisotropic fluid sphere by utilizing the method of Frobenius for an infinite series; a 
particular form for one of the gravitational potentials was assumed and the anisotropic 
factor was specified. These solutions are given in terms of special functions. For 
particular values of the parameters involved it is possible to write the solution in terms 
of elementary functions: polynomials and products of polynomials and algebraic 
functions. The anisotropic factor   may vanish in the solutions anisotropic solutions can 
be regained. Thus this approach has the advantage of necessarily containing 
anisotropic stellar solution.. The simple form of the solutions found facilitates the 
analysis of the physical features of an anisotropic fluid sphere. The gravitational 
potentials are finite at the centre r = 0 and at the boundary r = R. These functions are 
continuous and well behaved in the interior of the relativistic star. The radial pressure 
is continuous and well behaved in the interior of the star. Also the radial pressure is 
greater than zero in the interval (0,R), regular at the centre, and vanishes at the 
boundary. In general the tangential pressure is not zero at the boundary of the star 
which is different from the radial pressure. 
 
 
CONCLUSION 
The main objective of this work was to find exact solutions to the anisotropic fluid 
sphere which can be used to describe a relativistic dense star. Solutions of the 
complicated system of nonlinear partial differential equations were sought by 
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specifying physically reasonable forms for one of the gravitational potentials and the 
anisotropic factor. A number simple solutions to the system, which we believe to be 
physically reasonable, were obtained explicitly in terms of elementary functions. It was 
also possible to find other categories of solutions by specifying other types of spatial 
geometries.   
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