UPGRADING SRI LANKAN NATURAL VEIN GRAPHITE BY
PURIFICATION AND SURFACE MODIFICATION

H.P.T.S. Hewathilake1, H.W.M.A.C. Wijayasinghe1, N.W.B. Balasooriya2 and
H.M.T.G.A. Pitawala3

1Institute of Fundamental Studies, Kandy; 2Faculty of Applied Sciences, SEUSL
3Dept. of Geology, University of Peradeniya, Peradeniya

Sri Lanka is well known for high quality vein graphite, containing about 95-98% of
pure carbon. Vein graphite in Sri Lanka have been categorized into four structurally
distinct graphite varieties, shiny-slippery-fibrous graphite (SSF), needle-platy graphite
(NPG), coarse striated-flaky graphite (CSF) and coarse flakes of radial graphite (CFR).
Impurity content in different structural type varies depending on the mode of
occurrences and nature of graphite vein. Both chemical and physical methods are
employed for removing impurities from the graphite. Among them, flotation is a
versatile and selective mineral processing technique, which can be used to achieve
specific separations from complex ores. Therefore the present study focuses on
purification of Sri Lankan natural vein graphite by froth flotation, HCl leaching and
alkali roasting followed by surface modification suitable for advance electrical
applications. Graphite powder (<75 μm) from Needle Platy Graphite (NPG) and Shiny
Slippery Fibrous (SSF) morphological types were used for this study. Initially 200g
from both varieties were subjected to froth flotation. For HCl leaching under the
chemical purification study, 3g of each graphite sample was treated with 10 vol. % HCl
at 65°C for 75 minutes. For the alkali roasting, 3g from each graphite sample was
mixed with 35vol. % NaOH (solid: liquid = 1:2) separately and roasted at 250 °C under
air for one hour. Selected graphite samples having carbon content about 99.9% were
used for surface modification. Thermal oxidation was performed at 550 °C in a box
furnace under air for 6 hours. Under the chemical method, graphite powder (3 g) was
treated with 69% HNO3 (100 ml) under stirring at 60 °C for 24 hours. Carbon
percentage of graphite was determined according to ASTM - 561 and weighing the
residues. Filtrates were taken from both chemical purification techniques and analyzed
by the Atomic Absorption Spectroscopy (AAS) technique. Both purified and modified
graphite samples were characterized by Fourier Transform Infrared (FTIR)
spectrophotometer (Nicolet 6700). The electrical conductivity measurements were
performed by the d.c. four probe technique. The results revealed that the froth flotation
could not make a considerable influence on purification, in contrast, both the acid
leaching and alkali roasting methods revealed that Sri Lankan natural vein graphite can
be purified over 99% carbon content. The surface modification study shows the
formation of oxidized species on the graphite surface and the surface modification by
chemical oxidation has a higher effect than the thermal oxidation. Both of the
investigated graphite varieties reveal the possessing of electrical conductivity in the
semi-conductivity range. Further the purification process improves the electrical
conductivity, though it slightly decreases with surface modification.

Acknowledgements
This work was supported by the University Grant Commission (UGC), Ministry of
Higher Education under Innovative Research Grant 2013.