Hydrograph

Prof. M.M.M. Najim
• Plot of discharge against time
• Has three regions: rising limb, crest segment and falling limb
• Nature of hydrograph depend on rainfall and watershed characters.
• Isolated storm results single peak hydrograph and complex storm yields multiple peak hydrograph.
Hydrograph
• Rising limb
 – Ascending portion representing rising discharge due to gradual increase in flow in stream
 – Slope depend on storm and basin characteristics

• Crest Segment
 – Inflection point on rising limb to falling limb
 – Indicate the peak flow
 – Controlled by storm and watershed characteristics
 – Multiple peaks – due to occurrence of two or more storms of different intensities in a closer interval
• Falling limb (recession limb)
 – From point of inflection at the end of crest segment to base flow.
 – Inflection point indicate the time at which rainfall stopped
 – Shape independent on storm characteristics but dependant on watershed characteristics
Factors affecting shape of hydrograph

• Climatic factors
 – Form of precipitation
 • Rainfall and snow fall – rainfall tends to produce runoff rapidly generating hydrograph with high peak and narrow base
 – Rainfall Intensity
 • Affect volume of runoff, occurrence of peak flow, duration of surface flow
 • Higher the intensity quicker the peak flow and conical hydrograph
 – Duration of rainfall
 • Longer the duration more the volume
 • Longer duration, peak flow occur after longer time and hydrograph is flatter with broad base
– Distribution of rainfall
 • When heavy rain occur near outlet
 – Peak flow occur quickly
 • When heavy rain occur in upper areas
 – Peak flow occur after few hours
 – Lower peak and broad base (more time taken for flow to reach outlet)

– Direction of storm movement
 • Affects amount of peak flow and surface flow duration
 • Upward direction – lower peak and broad base
 • Downward direction – sharp peak and narrow base
Distribution of rainfall and hydrograph

Hydrograph affected by movement of rainfall
• Physiographic factors - characteristics of watershed
 – Shape of basin
 • Affects the shape of hydrograph affecting time of concentration
 • Broad shaped – peak flow occur soon because of less time of concentration, narrow hydrograph with high peak
 • Fan shaped – peak flow occur at longer time interval because of longer time of concentration, broad base lower peak hydrograph
Effect on Hydrograph by Shape of catchment
- Size of basin
 - Small basin – flow dominated by overland flow that joins channel quickly, peak flow occur quickly

- Stream slope
 - More the stream slope higher the slope of recession limb, reduce base width of hydrograph
 - Small slope make recession limb flatter, base width wider

- Nature of valley
 - Greater valley slope higher the slope of recession limb
– Drainage density
 • Higher the drainage density, quicker the peak flow, recession limb is steeper with narrow hydrograph
 • Lesser the drainage density, slow moving rising limb and wide base width

– Landuse
 • Vegetation increases loss of water
 • Higher the vegetation density, lesser the peak flow

– Surface depression
 • Presence of ponds, rills etc. delay and modify flow pattern
 • Decreases peak flow and wide base width
A. Catchment with high drainage density

B. Drainage with low drainage density
Base flow separation

• Surface runoff hydrograph derived by separating base flow from hydrograph

• Straight line method
 – Join the starting and end points of surface runoff by straight line
 – Area under the straight line is base flow
• Fixed base method
 – Draw straight line from end point of surface runoff on rising limb to a point obtained by $N = 0.83 A^{0.2}$ where A is area of watershed in km^2 and N is days
 – Fig 7.8 madan
• Variable slope method
 – Base flow before concentration with surface runoff is extended till it reaches the perpendicular line drawn from peak
 – Intersection point is extended to a point given by $N = 0.83 \ A^{0.2}$ on recession limb
 – (Fig 7.9 Madan)
• Base flow recession curve method
 – Extend base flow recession curve backward till it intersects perpendicular line drawn from inflection point on recession limb
 – Join surface runoff concentration point on rising limb to intersection point
 – (Fig 6.9 Suresh)
Effective rainfall hyetograph

- Effective rainfall – Part of precipitation that entirely contribute to the formation of direct runoff
- ERH shows effective rainfall and initial loss
- ERH provide information on
 - Effective rainfall depth and duration
 - Direct runoff volume
 - Amount of initial loss
- ERH can be used to determine effective rainfall
\[ER = \sum_{i=1}^{n} I_i \Delta t \]

ER – effective rainfall depth (cm or mm)

\(I_i \) = Rainfall intensity at time \(i \) (cm/h or mm/h)

\(\Delta t \) = time interval

Volume of runoff = \(ER \times A \) (Unit conversion needs to be done)

Initial Loss = Area of hyetograph – Area of ERH
Direct Runoff Hydrograph

- Plot of direct runoff and time
- Area of hydrograph gives the volume of direct runoff which is response to effective rainfall
- No base flow included to direct runoff hydrograph

- Relationship between DRH and ERH
 - Both shows the same total quantity of direct runoff but in different units
\[A_{ERH} \times A_W = A_{DRH} \]

\[A_{ERH} = \frac{A_{DRH}}{A_W} \]

\[ER = \frac{A_{DRH}}{A_W} \]

\(A_{ERH} \) – Area of ERH
\(A_w \) – Area of watershed
\(A_{DRH} \) – Area of DRH
Computation of Direct Runoff from DRH

• Separate base flow and get the DRH
• For different time intervals calculate the area under the curve

Volume of Direct Runoff = \(A_1 + A_2 + A_3 + \ldots + A_n \)

\[
= \left(\frac{1}{2} Q_1 \Delta t \right) + \left[\left(\frac{Q_1 + Q_2}{2} \right) \Delta t \right] + \ldots .
\]
Unit Hydrograph

- Hydrograph of surface runoff of a catchment resulting from unit depth (usually 1 cm) of rainfall excess (effective rainfall) occurring uniformly over the watershed and at uniform rate for a specified duration.
- A constant for the watershed
- Can be used to determine volume of direct runoff of any storm occurring in the catchment
• Assumptions in deriving Unit Hydrograph
 – Uniform intensity of rainfall within a specified duration
 – Effective rainfall is uniformly distributed in the watershed
 – Base of time duration of the direct runoff hydrograph is constant
– Direct runoff due to effective rainfall over the watershed is always same, not vary with time
– Relationship between direct runoff and effective rainfall is linear (Example: if ER of x cm generate y m3 of direct runoff, 3x will generate 3y m3)
Derivation of unit hydrograph

- Step 1: Separate base flow from any method
- Step 2: Determination of the volume of direct runoff (discussed earlier)
- Step 3: Determine the effective rainfall

\[
Volume\ of\ Direct\ Runoff = \frac{\text{Watershed of Area} \times \text{Runoff Direct of Volume}}{\text{Area of Watershed}}
\]

- Step 4: Determination of ordinates of unit hydrograph

\[
OUHG = \frac{\text{Ordinate of DRH}}{ER}
\]

- Step 5: Plot the unit hydrograph
• Unit hydrograph can be used to get the hydrographs for other rainfall events.
 – Example: If 1 hour unit hydrograph is known, it can be used to compute hydrograph of a three hour event. (Example calculations 6.11 Suresh and 7.3 Madan)
• Uses of unit hydrograph
 – Development of flood hydrographs for extreme rainfall events that can be used to design hydraulic structures such as bridges, culverts etc.
 – Flood forecasting and warning
 – To extend flood flow records based on rainfall